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ABSTRACT
Interactive systems, such as online search interfaces, require
appropriate input if they are to produce accurate information.
Without this, they can be inaccurate if the user is uncertain
about the keywords. Current systems do not have the means
to detect uncertainty, which may lead to a negative user ex-
perience. We explore physiological and behavioral measure-
ments as tools to implicitly detect users’ uncertainty, and pro-
vide a method to integrate input variability in interactive sys-
tems. We conducted a laboratory study where participants
answered questions of varying difficulty, recording physio-
logical data via a key logger, an eye tracker, and a heart rate
sensor. Our results show that participants spent significantly
more time on difficult questions and looked longer at their an-
swers before submitting them. Based on our results, we pro-
vide initial insights on how data from physiological sensors
and logged user behavior can be utilized to enrich interactive
systems and evaluate a user’s uncertainty level.

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation (e.g. HCI):
User Interfaces

Author Keywords
Uncertainty; User Input; Interactive Systems

INTRODUCTION & RELATED WORK
Recent developments in mobile sensing in search technolo-
gies empower users to quickly and efficiently obtain informa-
tion on demand. The majority of the more than one billion1

iPhone units sold feature a voice-operated personal assistant.
Users can easily submit search queries, request directions, or
obtain sports results. However, it is not always easy to ask the
right questions. Current systems cannot support information
retrieval when the user does not communicate their need in a
format acceptable by the device. Thus, when one is uncertain
1http://www.apple.com/newsroom/2016/07/apple-celebrates-one-
billion-iphones.html

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MUM 2017, November 26–29, 2017, Stuttgart, Germany

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5378-6/17/11. . . $15.00

DOI: https://doi.org/10.1145/3152832.3152859

Figure 1. The study setup. Participants were asked to answer a set of
questions of varying difficulty while seated at a desktop computer.

of what input to provide, it may be hard to obtain relevant
information efficiently. In this paper, we investigate how sys-
tems can detect uncertain input using physiological sensing
or behavioral measurements. We envision use cases where
interactive systems can offer additional support to the user
(e.g. predictive input) when the user is hesitant about what
command to provide.

Although uncertainty is a concept that is present everywhere
in daily life, it is seldom taken into account when designing
interactive systems. One big strand of research about uncer-
tainty explores and compares visualizations for uncertain data
such as glyphs [17] or box plots [20]. Another strand of re-
search deals with the psychological aspects and difficulties of
communicating uncertainty to laymen [14, 27]. Recently, re-
search in HCI starts to focus on uncertainty communication
to for example support the exploration of genomics data [24]
or enhance bus arrival predictions [13]. To be able to commu-
nicate and visualize data, the uncertainty has to be quantified,
thus also modelled correctly [3]. One of the main challenges
for quantifying uncertainty is the user input, which is seldom
taken into account. If so, it deals with the technical aspects
of uncertainty such as measurement error at the sensor level (
e.g. touch screens [22, 28] or capacitive sensing arrays [21])
or the explicit input of uncertainty by the user [8].

Concurrently, the use of ubiquitous physiological sensing is
gaining momentum in the HCI field. As sensing devices be-
come parts of everyday life, e.g. as parts of smart watches,
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research is looking for new use cases for extended physiolog-
ical data about the user. While heart rate has been extensively
used by sportsmen to understand the details of their training
performance [25], Curmi et al. [5] propose using heart rate
to enhance social interactions. Recently, McDuff et al. [16]
demonstrated that adaptive systems can infer the level of cog-
nitive stress based on the user’s heart rate variability and ad-
just interaction properties accordingly. In a video conference
scenario, Hosoda et al. [9] used heart rate resonance mea-
surements to assess the level of engagement of participants.
In our work, we investigate if heart rate data can be used to
measure how uncertain the user is about the input they are
providing.

Further, we also look at additional information that can be
extracted from the user’s gaze pattern. Vision is one of our
most important senses. We predominantly focus our attention
and gaze direction on elements of interest. Researchers have
used this fact to develop applications for gaze-contingent in-
terfaces, such as the creation of photo albums by rating pic-
tures on how often they were looked at [26] or tutoring sys-
tems [6] and translation assistance [12]. Furthermore, gaze
patterns have been analyzed in quiz [4] and problem solving
studies [15] indicating varying patterns when users are con-
fronted with unfamiliar or difficult tasks.

In this paper, we present a study where we asked 21 partici-
pants to answer questions of varying difficulty on a desktop
computer while we measured their heart rate and eye gaze
(see Figure 1). In order to do so, we compiled a set of general
knowledge questions with adjusted difficulty. We then iden-
tified a subset of measures that produced significant effects
and may be used for uncertainty detection. Thus, we con-
tribute initial insights for building uncertainty-aware systems
with physiological sensing. Next, we discuss the implications
of our study for future systems.

This paper contributes the following:

1. A study of how the participants’ physiological and be-
havioural parameters vary when answering questions of
varying difficulty when seated in front of a desktop com-
puter;

2. A rich data set of physiological measurements. The dataset
is publicly available and intended for reuse in future re-
search;

METHOD
We conducted a study in order to evaluate the influence of
users’ uncertainty on physiological signals and behavioral
measurements. Participants had to answer 140 questions with
different difficulty levels and subsequently self-reported their
perceived uncertainty. We chose an ex-post-facto experimen-
tal design as the self-reported score cannot be controlled di-
rectly, but has to be determined after the participants an-
swered the questions.

Question Selection Process
To identify questions with different levels of uncertainty, we
built a pool of free-text questions following a three-step se-
lection process. We first transcribed 1770 German quiz ques-

tions from four books about general knowledge [2, 10, 11,
18]. As they were multiple choice questions, we manu-
ally sorted them and deleted questions that were not solv-
able without multiple choice answers. On the remaining 1164
free-text questions, we applied the following filter criteria:

• Maximum answer length of four words: We removed
all questions containing answers of more than four words,
eliminating full-sentence answers. Thus, we minimize the
confounding uncertainty resulting from the need to spell
long complex phrases.

• Maximum question length of 15 words: All questions
with more than 15 words were removed as this is the upper
border for the recommended sentence length in German
for easy comprehension [23]. Thus, we remove complex
sentences that could be difficult to read.

• Flesch-Reading-Ease of questions between 60 and 80:
The Flesch-Reading-Ease [7] (FRE) is a readability met-
ric that measures how difficult it is to understand a text
based on average sentence-length (ASL) and average num-
ber of syllables per word (ASW). We use an adapted ver-
sion (FREgerman = 180− AS L− (58.5 · AS W)) for German
language as proposed by Amstadt [1] to filter very easy or
very difficult questions and reduce the confounding uncer-
tainty introduced by complex sentences. Sentences with
a FRE of 60 to 80 fall into the category of medium and
medium easy sentences.

We conducted an online survey including the remaining 251
questions. In total, 59 participants provided 7939 answers
to questions (M = 134.55 questions per participants, S D =
102.7). For each question, participants had to specify how
certain their answer was on a 5-point Likert scale. We as-
signed each question an uncertainty class corresponding to
the item most participants selected on the Likert scale. For
each item on the Likert scale, we picked 40 questions for the
extremes and respectively 20 questions for the items in the
middle. We picked the questions for the class by calculating
the ratio of number of assignments to the class and the total
answers for the question taking questions with a higher ratio.

Participants
We recruited 24 participants (15 male, 9 female) with an av-
erage age of 23.17 (S D = 3.36). All of them were native
German speakers. For our analysis, we used the data of 20
participants as some data was lost due to technical difficul-
ties. For the analysis of the eye movements and the heart
rate, we used subsets of the participant base due to unreliable
tracking caused by make-up and loosened electrodes.

Apparatus
The study was conducted using a remote eye-tracker (SMI
RED 250) attached to the bottom of a 22 in. LCD-display. To
enter their answers and evaluations, participants were given
a keyboard and a mouse. In addition, we used three dividing
walls to shield the participants from disturbances. To record
the ECG-signal, we used a NEXUS connected to the record-
ing laptop via Bluetooth. The interface presenting the ques-
tions was implemented as a website running in the browser.
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Procedure
After arriving at the lab, participants filled a consent form
and a demographic questionnaire. The three ECG-electrodes
were attached to the left and right arm and above the left an-
kle. After calibrating the eye tracker, participants got detailed
instructions on the tasks. We asked participants to provide a
reasonable answer (e.g., stating a city name if the question
asked for a city) even if they did not know the correct answer.
After pressing start and answering a test question, participants
were shown all 140 questions in randomized order (see Fig-
ure 2 for a sample question) answering them one by one.

Figure 2. Example question presented to the participants. Translation:
How were craftsmen called in Athen?

Throughout the study, we collected data from the eye-tracker,
the NEXUS, and the browser. Eye movements were recorded
at 250 Hz, the ECG-signal at 256 Hz. Regarding the browser
data, we collected all key events, click events, mouse move-
ments, answer completion times, the participants’ answers,
and field focus events.

After answering all questions, participants rated their uncer-
tainty levels for each presented questions based on a 5-point
Likert scale from “Entirely don’t agree” to “Fully agree”
given the statement: “I am sure that my answer is correct.”
(see Figure 3). The order of questions was again randomized.

Figure 3. Exemplary evaluation for one question. Translation: How
many seconds are 5 1/2 minutes? Your answer: 330

Measures
Using the collected data we derived several metrics from each
data source. Regarding the ECG-signal, we calculated heart
rate and heart rate variability. From the browser data we
extracted numerous features concerning time (such as com-
pletion time, time between first and last typing), typing be-
haviour (such as typing speed, key down time, and deletion
count) and mouse events (such as the length of the mouse path
and click counts). From our recorded eye movement data, we
extracted features related to fixations, saccades, gaze direc-
tion and eye blinks. For fixations, saccades, and blinks we
mainly looked at duration (average, total), count as well as
velocity metrics (e.g. acceleration for saccades). We coarsely
analyzed gaze direction by measuring the amount of time that
the user spent on specific screen elements, such as the ques-
tion itself and the answer field. Additionally, we submitted

measures related to refixation ratio and backpropagations for
statistical analysis.

RESULTS
In this section, we present statistical results for a subset of the
measures in our study. We focus on data that we identified
as highly promising for detecting uncertainty. We provide
examples of data from the data sources.

Browser data
Time between first and last typing
First, we look at the total time elapsed from when the user be-
gan typing the answer to when the user finished typing. The
grand mean was 4.43 s (S D = 7.13 s). Questions with the
lowest self-perceived uncertainty (very certain) required the
least time (M = 3.73 s, S D = 5.60 s) while the one with the
highest self-perceived uncertainty (very uncertain) required
the longest typing periods (M = 5.51 s, S D = 9.91 s). We
conducted a one-way ANOVA to investigate the effect of
question uncertainty level on time spent between first and last
typing. The effect was statistically significant (F4,2717 = 8.34,
p < .001).

Time before first typing
We also investigated the time elapsed before the users started
typing their answers (see Figure 4). We recorded the grand
mean at 9.19 s (S D = 9.45 s). For self-perceived lowest
uncertainty, participants required the lowest amount of time
to begin providing an answer (M = 5.15 s, S D = 4.56 s).
The highest self-perceived uncertainty questions produced
the longest times before typing (M = 13.14 s, S D = 13.07 s).
We conducted a one-way ANOVA to investigate the effect of
question uncertainty level on time elapsed before the users
began typing. The effect was statistically significant with
F4,2717 = 84.01 and p < .001.
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Figure 4. Boxplot of time elapsed until first typing grouped by questions
uncertainty level (1: very uncertain, 5: very certain).

Eyetracker data
Time spent looking at the answer field
Next, we present the analysis for the time users spent looking
at the answer field, normalized by the total time looking at
the screen. The average time ratio was 0.30 (S D = 0.19).
Participants spent the most amount of time looking at an-
swer field when solving “very certain” questions (M = 0.34,
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S D = 0.21). The “very uncertain” questions caused par-
ticipants to look at the answer field for the shortest time
(M = 0.26, S D = 0.18). We conducted a one-way re-
peated ANOVA to investigate the effect of question uncer-
tainty level on time spent between looking at the answer field.
We observed a statistically significant effect (F4,1907 = 13.53,
p < .001).

Refixation ratio
Lastly, we investigate the amount of refixations that occurred,
normalized by the fixation count for the respective ques-
tion (see Figure 5). The average refixation ratio was 0.36
(S D = 0.17). The ratio was lowest for the “very certain”
questions (M = 0.30, S D = 0.17). The “very uncertain”
questions showed the highest ratio (M = 0.41, S D = 0.18).
We conducted a one-way repeated ANOVA to investigate the
effect of question uncertainty level on the refixation ratio. We
observed a statistically significant effect (F4,1907 = 32.03,
p < .001).

Figure 5. Violin plot of refixation ratio grouped by questions difficult (1:
very uncertain, 5: very certain).

ECG data
We investigated median heart rates (HR) and heart rate vari-
ability (HRV) while answering questions. As it is understood
that heart rate reacts with a certain delay, we tried multiple
aggregation strategies to determine if uncertainty had an ef-
fect on heart behaviour. We used combinations of four dif-
ferent lag values — 1000, 5000, 9000, 0 [ms] and three dif-
ferent summation window sizes — 1000, 5000, 10000 [ms],
resulting in 12 sets of measurements. We performed one-way
ANOVAs to investigate the effect of question difficulty on
median HR and HRV. No significant results were found for
both measures (p > .05)

DISCUSSION
The results of our study indicate that there are multiple possi-
bilities of sensing uncertainty of user input. While we focused
on physiological sensing, we found significant differences in
measures obtained using the keyboard. It is possible that ex-
tensive computational analysis of keyboard behaviour may be
enough to measure uncertainty in some scenarios. However,
it appears that combining data from eye tracking and key-
board input can provide a more reliable metric. This question,
however, is outside of the scope of this paper. We make our
full data set available to the research community to explore
this question further.

We were surprised to learn that question difficulty did not
have a significant effect on heart rate measurements or re-
lated eye tracking metrics such as time spent looking at the
screen. As past work indicated that heart rate was correlated
with cognitive stress [16] and conversational engagement [9],
we expected that hesitation would produce a similar effect.
We believe that our results can be explained by two reasons.
Firstly, our study offered a comfortable and safe environment
for the users. As the participants knew that their answers
did not have any implications, being unsure of an answer did
not produce detectable physiological effects including avert-
ing one’s gaze2 during a thought process. A way to address
this issue in a future study would be to reward participants
based on performance. Secondly, heart rate reactions to hes-
itation may be delayed by a time period that is longer than
the answer to the question we provided. This appears to be
likely as it takes 5 or more seconds for the heart rate to react
to sudden physical exertion [19].

We recognise that our study is prone to certain limitations.
We used only questions in German, which may have created
a cultural bias. It is possible that other cultures react to hes-
itation in a different way, producing stronger physiological
signals. Our experiment was performed in a controlled envi-
ronment where outside distractions were minimised. We do
not know if external factors could affect the physiological re-
sponse to uncertainty. Furthermore, we used only three sens-
ing modalities in our work. Future research should explore if
other sensors could provide better results.

CONCLUSION
In this work, we presented our inquiry into detecting uncer-
tainty in input through physiological sensing and user behav-
ior data. We reported the results of our experiment where par-
ticipants answered questions of varying difficulty. We gath-
ered data from a browser, an eye tracker and a heart rate sen-
sor and analysed it to identify measures useful for approxi-
mating uncertainty. Time between first and last typing, and
time spent looking at the question were identified as useful
metrics that can be obtained from a browser. We also pointed
out that the time of looking at the answer field and refixa-
tion count are relevant measures that can be acquired with an
eye tracker. Finally, we found that heart rate was unlikely to
provide information useful in determining if the user is hes-
itant. Thus, we contribute a first step in determining which
data sources may be useful for building uncertainty-aware
systems.

To support further research, we will release the physiological
measurement data obtained to the public domain. In future
work, we plan to use artificial intelligence tools and machine
learning to build advanced methods of uncertainty detection.
We hope that the work presented in this paper will inspire
further research in providing additional, contextualised input
assistance when users are uncertain about how to interact with
a system.

2Time spent looking at the screen did not significantly differ for the
different uncertainty levels.
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